
FFTW: AN ADAPTIVE SOFTWARE ARCHITECTURE FOR THE FFT

Matteo Frigo

MIT Laboratory for Computer Science
545 Technology Square NE43-203

Cambridge, MA 02139
athena@theory.lcs.mit.edu

Steven G. Johnson

Massachusetts Institute of Technology
77 Massachusetts Avenue, 12-104

Cambridge, MA 02139
stevenj@alum.mit.edu

ABSTRACT

FFT literature has been mostly concerned with minimizing the
number of floating-point operations performed by an algorithm.
Unfortunately, on present-day microprocessors this measure is far
less important than it used to be, and interactions with the pro-
cessor pipeline and the memory hierarchy have a larger impact
on performance. Consequently, one must know the details of a
computer architecture in order to design a fast algorithm. In this
paper, we propose an adaptive FFT program that tunes the com-
putation automatically for any particular hardware. We compared
our program, called FFTW, with over 40 implementations of the
FFT on 7 machines. Our tests show that FFTW’s self-optimizing
approach usually yields significantly better performance than all
other publicly available software. FFTW also compares favorably
with machine-specific, vendor-optimized libraries.

1. INTRODUCTION

The discrete Fourier transform (DFT) is an important tool in many
branches of science and engineering [1] and has been studied ex-
tensively [2]. For many practical applications, it is important to
have an implementation of the DFT that is as fast as possible. In
the past, speed was the direct consequence of clever algorithms [2]
that minimized the number of arithmetic operations. On present-
day general-purpose microprocessors, however, the performance
of a program is mostly determined by complicated interactions of
the code with the processor pipeline, and by the structure of the
memory. Designing for performance under these conditions re-
quires an intimate knowledge of the computer architecture. In this
paper, we address this problem by means of a novel adaptive ap-
proach, where the program itself adapts the computation to the de-
tails of the hardware. We developed FFTW, an adaptive, high per-
formance implementation of the Cooley-Tukey fast Fourier trans-
form (FFT) algorithm [3], written in C. We have compared many
C and Fortran implementations of the DFT on several machines,
and our experiments show that FFTW typically yields significantly
better performance than all other publicly available DFT software.
More interestingly, while retaining complete portability, FFTW is
competitive with or faster than proprietary codes such as Sun’s Per-
formance Library and IBM’s ESSL library that are highly tuned
for a single machine. Such encouraging results raise the hope that

Matteo Frigo was supported in part by the Defense Advanced Re-
search Projects Agency (DARPA) under Grant N00014-94-1-0985, and by
a Digital Equipment Corporation Fellowship. Steven G. Johnson was sup-
ported in part by a DoD NDSEG Fellowship, an MIT Karl Taylor Compton
Fellowship, and by the Materials Research Science and Engineering Center
program of the National Science Foundation under award DMR-9400334.

fftw_plan plan;
COMPLEX A[n], B[n];

/* plan the computation */
plan = fftw_create_plan(n);

/* execute the plan */
fftw(plan, A);

/* the plan can be reused for
other inputs of size N */

fftw(plan, B);

Figure 1: Simplified example of FFTW’s use. The user must first
create a plan, which can be then used at will.

similar adaptive techniques could be applied successfully to other
problems.

In FFTW, the computation of the transform is accomplished by
an executor that consists of highly optimized, composable blocks
of C code called codelets. A codelet is a specialized piece of code
that computes part of the transform. The combination of codelets
applied by the executor is specified by a special data structure
called a plan. The plan is determined at runtime, before the com-
putation begins, by a planner which uses a dynamic programming
algorithm [4, chapter 16] to find a fast composition of codelets.
The planner tries to minimize the actual execution time, and not
the number of floating point operations, since, as we show in Sec-
tion 2, there there is little correlation between these two perfor-
mance measures. Consequently, the planner measures the run time
of many plans and selects the fastest. In the current implementa-
tion, plans can also be saved to disk and used at a later time.

The speed of the executor depends crucially on the efficiency
of the codelets, but writing and optimizing them is a tedious and
error-prone process. For this reason, we found it convenient to
generate the codelets automatically by means of a special-purpose
compiler. FFTW’s codelet generator, written in the Caml Light
dialect of the functional language ML [5], is a sophisticated pro-
gram that first produces a representation of the codelet in the form
of abstract C syntax tree, and then “optimizes” the codelet by ap-
plying well known transformations such as constant folding and
algebraic identities. The main advantages of generating code are
that it is simple to experiment with different algorithms or coding
strategies, and it is easy to produce many long blocks of unrolled,
optimized code.

FFTW’s internal complexity is not visible to the user, how-
ever. The user interacts with FFTW only through the planner and



the executor. (See Figure 1.) The codelet generator is not used
after compile time, and the user does not need to know Caml Light
or have a Caml Light compiler. FFTW provides a function that
creates a plan for a transform of a specified size, and once the plan
has been created it can be used as many times as needed.

The FFTW library (currently at version 1.2) is publicly avail-
able at our WWW page [6]. FFTW is not a toy system, but a
production-quality library that already enjoys many hundreds of
users. FFTW performs one- and multidimensional transforms, and
it is not restricted to input sizes that are powers of 2. A parallel
version of the executor, written in Cilk [7], also exists.

The rest of the paper is organized as follows. In Section 2 we
outline the runtime structure of FFTW, consisting of the executor
and the planner. In Section 3 we briefly describe the compile-time
structure of FFTW—that is, the codelet generator. In Section 4 we
present part of the performance measurements we collected during
the development of FFTW. Finally, in Section 5 we give some
concluding remarks.

2. FFTW’S RUNTIME STRUCTURE
In this section we describe the executor, which is the part of FFTW
that actually computes the transform. We also discuss how FFTW
builds a plan (a sequence of instructions that specifies the opera-
tion of the executor). Finally, we present evidence that FFTW’s
adaptive architecture is a good idea.

The executor implements the Cooley-Tukey FFT algorithm
[3], which centers around factoring the size N of the transform
into N = N1N2. The algorithm recursively computes N1 trans-
forms of size N2, multiplies the results by certain constants tradi-
tionally called twiddle factors, and finally computes N2 transforms
of size N1. The executor consists of a C function that implements
the algorithm just outlined, and of a library of codelets that imple-
ment special cases of the Cooley-Tukey algorithm. Specifically,
codelets come in two flavors. Normal codelets compute the DFT
of a fixed size, and are used as the base case for the recursion.
Twiddle codelets are like normal codelets, but in addition they mul-
tiply their input by the twiddle factors. Twiddle codelets are used
for the internal levels of the recursion. The current FFTW release
contains codelets for all the integers up to 16 and all the powers of
2 up to 64, covering a wide spectrum of practical applications.

The executor takes as input the array to be transformed, and
also a plan, which is a data structure that specifies the factorization
of N as well as which codelets should be used. For example, here
is a high-level description of a possible plan for a transform of
length N = 128:

DIVIDE-AND-CONQUER(128, 4)
DIVIDE-AND-CONQUER(32, 8)
SOLVE(4)

In response to this plan, the executor initially computes 4 trans-
forms of size 32 recursively, and then uses the twiddle codelet of
size 4 to combine the results of the subproblems. In the same
way, the problems of size 32 are divided into 8 problems of size 4,
which are solved directly using a normal codelet (as specified by
the last line of the plan) and are then combined using a size-8 twid-
dle codelet.

The executor works by explicit recursion, in contrast with the
traditional loop-based implementations [1, page 608]. We chose
an explicitly recursive implementation because of theoretical ev-
idence that divide-and-conquer algorithms improve locality [8].
For example, as soon as a subproblem fits into the cache, no fur-
ther cache misses are needed in order to solve that subproblem. We
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Figure 2: Speeds vs. flops of various plans considered by the
planner for N = 32768. The units of speed (“MFLOPS”) and the
machine are described in Section 4. Notice that the fastest plan is
not the one that performs the fewest operations.

have not yet determined experimentally the relative advantages of
the loop-based and recursive approaches, however. Since a codelet
performs a significant amount of work, the overhead of the recur-
sion is negligible. Moreover, recursion is easier to code and allows
codelets to perform a well defined task that is independent of the
context in which the codelet is used.

How does one construct a good plan? FFTW’s strategy is to
measure the execution time of many plans and to select the best.
Ideally, FFTW’s planner should try all possible plans. This ap-
proach, however, is not practical due to the combinatorial explo-
sion of the number of plans. Instead, the planner uses a dynamic-
programming algorithm [4, chapter 16] to prune the search space.
In order to use dynamic-programming, we assumed optimal sub-
structure [4]: if an optimal plan for a size N is known, this plan is
still optimal when size N is used as a subproblem of a larger trans-
form. This assumption is in principle false because of the different
states of the cache in the two cases. In practice, we tried both
approaches and the simplifying hypothesis yielded good results.

In order to demonstrate the importance of the planner, as well
as the difficulty of predicting the optimal plan, in Figure 2 we show
the speed of various plans (measured and reported as in Section 4)
as a function of the number of floating point operations (flops) re-
quired by each plan. (The planner computes an exact count of
the operations.) There are two important phenomena that we can
observe in this graph. First, different compositions of the codelets
result in a wide range of performance, and it is important to choose
the right combination. Second, the total number of flops is inade-
quate as a predictor of the execution time, at least for the relatively
small variations in the flops that obtain for a given N .

We have found that the optimal plan depends heavily on the
processor, the memory architecture, and the compiler. For exam-
ple, for double-precision complex transforms, N = 1024 is fac-
tored into 1024 = 8 � 8 � 16 on an UltraSPARC and into 1024 =
32 � 32 on an Alpha. We currently have no theory that predicts the
optimal plan, other than some heuristic rules of the form “radix X
seems to work best on machine Y .”

3. THE CODELET GENERATOR

In this section we describe the codelet generator, which produces
optimized fragments of C code (“codelets”) specialized to com-
pute the transform of a fixed size. In the limited space available,
we shall try to give the reader a flavor of how the generator works
and why such a tool is important.



let simplify_times = fun
(Real a) (Real b) -> (Real (a *. b))

| (Real a) b ->
if (almost_equal a 0.0)

then (Real 0.0)
else if (almost_equal a 1.0) then b
else if (almost_equal a (-1.0))

then simplify (Uminus b)
else Times ((Real a), b)

Figure 3: Example of the rules that constitute the optimizer. The
function shown in the figure simplifies the product of two factors.
If both factors are real numbers, the optimizer replaces the multi-
plication by a single real number. Multiplications by constants can
be simplified when the constant is 0, 1 or�1. The actual generator
contains other rules that are not shown here.

The codelet generator accepts as input an integer N and pro-
duces a normal or a twiddle codelet that computes the Fourier
transform of size N (either the forward or backward transform).
The generator is written in the Caml Light dialect of ML [5]. Caml
is an applicative, polymorphic, and strongly typed functional lan-
guage with first-class functions, algebraic data types, and pattern
matching.

The generator operates on a subset of the abstract syntax tree
(AST) of the C language. First, the generator produces an AST
for a naı̈ve program that computes the transform. Then, it applies
local optimizations to the AST in order to improve the program.
Finally, it unparses the AST to produce the desired C code.

The AST generation phase creates a crude AST for the desired
codelet. This AST contains some useless code, such as multipli-
cations by 0 and 1, but the code is polished by the following opti-
mization phase. The current version of the AST generator contains
knowledge of many DFT algorithms, including Cooley-Tukey (in
the form presented in [1, page 611]), a prime factor algorithm (as
described in [1, page 619]), a split-radix algorithm [2], and Rader’s
algorithm for transforms of prime length [9]. Our first implemen-
tation of the Cooley-Tukey AST generator consisted of 60 lines
of Caml code. The prime factor and split-radix algorithms were
added using about 20 additional lines of code each. (To avoid
confusion, it is worth remarking that the codelet generator uses
a variety of algorithms for producing codelets, but the executor
is currently only capable of composing codelets according to the
Cooley-Tukey algorithm.)

The AST generator builds the syntax tree recursively. At any
stage of the recursion, several algorithms are applicable, and it is
not clear which one should be used. The AST generator chooses
the algorithm that minimizes a certain cost function which depends
on the arithmetic complexity of the codelet and its memory traf-
fic. Experimentally, we achieved the best results by minimizing
the function 4v+ f , where v is the number of stack variables gen-
erated, and f is the number of floating-point operations. (The co-
efficient 4 is not critical.) This choice of the cost function yielded
a typical improvement of about 20% over our first generator that
just implemented radix-2 Cooley-Tukey. Typically with this func-
tion, if the prime factor algorithm is not applicable, the generator
tends to use a radix-

p
N Cooley-Tukey algorithm.

The optimizer transforms a raw AST into an equivalent one
that executes much faster. The optimizer consists of a set of rules
that are applied locally to all nodes of the AST. A fragment of the
optimizer appears in Figure 3. The example shows that the pattern-
matching features of Caml are useful for writing the optimizer.
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Figure 4: Comparison of double precision 1D complex
FFTs on a Sun HPC 5000 (167MHz UltraSPARC-I). Compiled
with [cc|f77] -native -fast -xO5 -dalign. SunOS
5.5.1, Sun WorkShop Compilers version 4.2.

Most simplifying rules are obvious, such as “a + 0 ) a”,
but other rules are more subtle. For example, because of the usual
trigonometric identities, a codelet contains many floating-point con-
stant coefficients a that come paired with�a. We found that a rule
making all constants positive, propagating the minus sign accord-
ingly, typically yielded a speed improvement of about 10–15%,
because floating-point constants are typically not part of the pro-
gram code, but are loaded from memory. If the same constant ap-
pears twice in a C program, the compiler recycles the first memory
load.

We believe that tools like our codelet generator will become
increasingly important as processors grow more and more com-
plex and their performance becomes, practically speaking, unpre-
dictable. While in principle it is always possible to write an assem-
bly program that is faster than the program generated automati-
cally, in practice this option is seldom viable. For example, FFTW
tends to use high radices (such as 32 or 64) on processors with a
rich set of registers. The codelet of size 64 contains 928 additions,
248 multiplications, and 156 stack variables. Hand-coding such a
subroutine correctly would be a formidable task even for the most
talented programmer. Instead, not only does the generator produce
the correct code automatically, but it also allows hacks such as the
propagation of the minus sign to be implemented with just a cou-
ple of lines of code. Moreover, as we briefly mentioned earlier, it
is not clear a priori which algorithm and coding style will lead to
the best performance. Using the generator, however, we were able
to produce code quickly and experiment with new ideas.

4. PERFORMANCE RESULTS
We have compared FFTW with over 40 other complex FFT im-
plementations on 7 platforms, but due to space constraints we can
only present a small, characteristic selection of that data here. (For



more results, see [6].) In Figure 4, the performance is shown
for the 8 fastest codes on an UltraSPARC, along with that of 4
other interesting or well-known programs. Speed is measured in
“MFLOPS,” defined for a transform of size N as (5N log

2
N)t,

where t is the time in �s (see [10, page 45]). The codes are listed
in the legend under the author’s name (or by program name if it
is more well-known), and are sorted by average relative perfor-
mance. They include the Sun Performance Library version 1.2
(SUNPERF); public-domain code by T. Ooura (Fortran, 1996),
J. Green (C, 1996), and R. H. Krukar (C, 1990); the Fortran FFT-
PACK library [11]; a Fortran split-radix FFT by Sorensen [12]; a
Fortran FFT by Singleton [13]; Temperton’s Fortran GPFA code
[14]; Bailey’s “4-step” FFT implementation [15]; Sitton’s QFT
code [16]; and the four1 routine from [17] (NRF).

We get similar numbers on other machines. For example,
on an IBM RS/6000, FFTW ranges from 55% faster than IBM’s
ESSL library for N = 64, to 12% slower for N = 16384, to again
7% faster for N = 131072.

5. CONCLUSION
We believe computer architectures have become so complex that
manually optimizing software is difficult to the point of impracti-
cality. Our FFTW system is a method of dealing with such com-
plexity. Similar ideas have been incorporated by other researchers
[18] into an interesting system called EXTENT which uses a ten-
sor product framework to synthesize Fortran FFTs for multiproces-
sors. Like FFTW, EXTENT generates code optimized for speed,
but unlike FFTW, the generated program only works for one trans-
form size. The idea of using ML as a metalanguage for generat-
ing C applications first appeared, to the best of our knowledge, in
[19]. Other automatic systems for the generation of FFT programs
include [20], which describes the generation of FFT programs for
prime sizes. [21] presents a generator of Pascal programs imple-
menting a prime factor FFT algorithm. Johnson and Burrus [22]
applied dynamic programming to the design of optimal DFT mod-
ules. These systems all try to minimize the arithmetic complexity
of the transform rather than its execution time.

Adaptive techniques such as the ones we have used appear
very attractive, but much work remains to be done. The execu-
tor should be extended to use other DFT algorithms (prime factor,
split-radix). Currently, the development of an FFTW-like system
requires knowledge about programming languages and compilers.
We plan to develop a system for program generation that could
also be used by people with no specific competence in these fields.
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